
History of Configurations Management
Saturn V

Reproducability

Software complexity and Why it Needs Configuration

Management

 

What is Software
Why the Developer IDE is important

Develop Locally, test locally

Unit tests and test coverage

What shifting left means to developers

 

Requirements and traceability in the age of Agile
SCM in General and Versioning

It Starts at Code Check in

GIT Flow

 

How code is Turned into Software
Compiled Languages

Interpreted Languages

Java

 

Testing
Weyuker’s Axioms

Security
Constant Checking and Scanning

 

Packaging
Maven, Gradle, Ant/Ivy, and Binary Dependencies

Artifact Repositories

Release Packaging and Traceability

Different Package Types and What They Mean

NPM and Non-Binary Dependencies

Original Code Vs Third Party Code in the Age of Open

Source

 

Where Software Lives
The Platform

The Stack

The Application

 

Persistent Data
Database Development

Database Versioning

 

CI/CD
The Role of Automation in DevOps

How to Keep Things Organized When you Move Fast

Modern Configuration Management

Learn about configuration management in an Agile and DevOps world

Discover how new technology decreases the overhead of configuration management

Learn how to use automated methods to describe software configuration

Understand where to integrate these automated methods into the existing manual processes. 

Understand how to Integrate auditors into the process to ensure artifacts are acceptable for IV&V

 

The idea of configuration management is not new in the software industry, some organizations even have dedicated a

role or position for it. However, in recent years technology has changed, making configuration management not just an

organizational process, but a technological one. With the increase in the velocity in which software comes to market,

this class explores the human processes that need to change along with the tools that are necessary to collect,

represent, and make decisions on the large amount of information the software development process generates. 

 

Who Should Attend
This course is appropriate for Configuration Managers, Project Managers, Developers, Product Owners, Agile

Developers, Auditors and DevOps Engineers who have a high level knowledge of the Software Development Lifecycle

(SDLC) and Continuous Integration/Continuous Development pipelines. Familiarity with the high level concept of

infrastructure as code is also helpful.

Course Outline

1



Mapping Test to Change

Integration Testing

 

 

Semantic Versioning

 

Changing the Tires While the Car is Moving
API Versioning

Blue/Green Deployments

Feature Flags

When am I done?

 

Conclusions
Auditing

Tracking all the Different Pieces

Keeping the Information useful

 

2


	Modern Configuration Management

